Measuring cognitive distance between publication portfolios
Ronald Rousseau,
Raf Guns,
A.I.M. Jakaria Rahman and
Tim C.E. Engels
Journal of Informetrics, 2017, vol. 11, issue 2, 583-594
Abstract:
We study the problem of determining the cognitive distance between the publication portfolios of two units. In this article we provide a systematic overview of five different methods (a benchmark Euclidean distance approach, distance between barycenters in two and in three dimensions, distance between similarity-adapted publication vectors, and weighted cosine similarity) to determine cognitive distances using publication records. We present a theoretical comparison as well as a small empirical case study. Results of this case study are not conclusive, but we have, mainly on logical grounds, a small preference for the method based on similarity-adapted publication vectors.
Keywords: Cognitive distances; Barycenters; Similarity matrices; Similarity-adapted publication vectors; Weighted cosine similarity; Bootstrapping; Research expertise (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1751157717300743
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:11:y:2017:i:2:p:583-594
DOI: 10.1016/j.joi.2017.03.001
Access Statistics for this article
Journal of Informetrics is currently edited by Leo Egghe
More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().