EconPapers    
Economics at your fingertips  
 

Examining academic ranking and inequality in library and information science through faculty hiring networks

Yongjun Zhu and Erjia Yan

Journal of Informetrics, 2017, vol. 11, issue 2, 641-654

Abstract: In this study, we examine academic ranking and inequality in library and information science (LIS) using a faculty hiring network of 643 faculty members from 44 LIS schools in the United States. We employ four groups of measures to study academic ranking, including adjacency, placement and hiring, distance-based measures, and hubs and authorities. Among these measures, closeness and hub measures have the highest correlation with the U.S. News ranking (r=0.78). We study academic inequality using four distinct methods that include downward/upward placement, Lorenz curve, cliques, and egocentric networks of LIS schools and find that academic inequality exists in the LIS community. We show that the percentage of downward placement (68%) is much higher than that of upward placement (22%); meanwhile, 20% of the 30 LIS schools that have doctoral programs produced nearly 60% of all LIS faculty, with a Gini coefficient of 0.53. We also find cliques of highly ranked schools and a core/periphery structure that distinguishes LIS schools of different ranks. Overall, LIS faculty hiring networks have considerable value in deriving credible academic ranking and revealing faculty exchange within the field.

Keywords: Library and information science; Faculty hiring networks; Placement; LIS ranking; Academic inequality (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S175115771730041X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:11:y:2017:i:2:p:641-654

DOI: 10.1016/j.joi.2017.04.007

Access Statistics for this article

Journal of Informetrics is currently edited by Leo Egghe

More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:infome:v:11:y:2017:i:2:p:641-654