On the interplay between normalisation, bias, and performance of paper impact metrics
Marcel Dunaiski,
Jaco Geldenhuys and
Willem Visser
Journal of Informetrics, 2019, vol. 13, issue 1, 270-290
Abstract:
We evaluate article-level metrics along two dimensions. Firstly, we analyse metrics’ ranking bias in terms of fields and time. Secondly, we evaluate their performance based on test data that consists of (1) papers that have won high-impact awards and (2) papers that have won prizes for outstanding quality. We consider different citation impact indicators and indirect ranking algorithms in combination with various normalisation approaches (mean-based, percentile-based, co-citation-based, and post hoc rescaling). We execute all experiments on two publication databases which use different field categorisation schemes (author-chosen concept categories and categories based on papers’ semantic information).
Keywords: Impact indicators; Ranking evaluation; Field normalisation; Field bias; Test data (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1751157718304164
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:13:y:2019:i:1:p:270-290
DOI: 10.1016/j.joi.2019.01.003
Access Statistics for this article
Journal of Informetrics is currently edited by Leo Egghe
More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().