EconPapers    
Economics at your fingertips  
 

On the interplay between normalisation, bias, and performance of paper impact metrics

Marcel Dunaiski, Jaco Geldenhuys and Willem Visser

Journal of Informetrics, 2019, vol. 13, issue 1, 270-290

Abstract: We evaluate article-level metrics along two dimensions. Firstly, we analyse metrics’ ranking bias in terms of fields and time. Secondly, we evaluate their performance based on test data that consists of (1) papers that have won high-impact awards and (2) papers that have won prizes for outstanding quality. We consider different citation impact indicators and indirect ranking algorithms in combination with various normalisation approaches (mean-based, percentile-based, co-citation-based, and post hoc rescaling). We execute all experiments on two publication databases which use different field categorisation schemes (author-chosen concept categories and categories based on papers’ semantic information).

Keywords: Impact indicators; Ranking evaluation; Field normalisation; Field bias; Test data (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1751157718304164
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:13:y:2019:i:1:p:270-290

DOI: 10.1016/j.joi.2019.01.003

Access Statistics for this article

Journal of Informetrics is currently edited by Leo Egghe

More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:infome:v:13:y:2019:i:1:p:270-290