Globalised vs averaged: Bias and ranking performance on the author level
Marcel Dunaiski,
Jaco Geldenhuys and
Willem Visser
Journal of Informetrics, 2019, vol. 13, issue 1, 299-313
Abstract:
We analyse the difference between the averaged (average of ratios) and globalised (ratio of averages) author-level aggregation approaches based on various paper-level metrics. We evaluate the aggregation variants in terms of (1) their field bias on the author-level and (2) their ranking performance based on test data that comprises researchers that have received fellowship status or won prestigious awards for their long-lasting and high-impact research contributions to their fields. We consider various direct and indirect paper-level metrics with different normalisation approaches (mean-based, percentile-based, co-citation-based) and focus on the bias and performance differences between the two aggregation variants of each metric. We execute all experiments on two publication databases which use different field categorisation schemes. The first uses author-chosen concept categories and covers the computer science literature. The second covers all disciplines and categorises papers by keywords based on their contents. In terms of bias, we find relatively little difference between the averaged and globalised variants. For mean-normalised citation counts we find no significant difference between the two approaches. However, the percentile-based metric shows less bias with the globalised approach, except for citation windows smaller than four years. On the multi-disciplinary database, PageRank has the overall least bias but shows no significant difference between the two aggregation variants. The averaged variants of most metrics have less bias for small citation windows. For larger citation windows the differences are smaller and are mostly insignificant.
Keywords: Author impact indicators; Globalised vs. averaged; Field bias; Ranking evaluation; Test data (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1751157718304498
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:13:y:2019:i:1:p:299-313
DOI: 10.1016/j.joi.2019.01.006
Access Statistics for this article
Journal of Informetrics is currently edited by Leo Egghe
More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().