EconPapers    
Economics at your fingertips  
 

Adaptive learning forecasting, with applications in forecasting agricultural prices

Foteini Kyriazi, Dimitrios Thomakos and John B. Guerard

International Journal of Forecasting, 2019, vol. 35, issue 4, 1356-1369

Abstract: We introduce a new forecasting methodology, referred to as adaptive learning forecasting, that allows for both forecast averaging and forecast error learning. We analyze its theoretical properties and demonstrate that it provides a priori MSE improvements under certain conditions. The learning rate based on past forecast errors is shown to be non-linear. This methodology is of wide applicability and can provide MSE improvements even for the simplest benchmark models. We illustrate the method’s application using data on agricultural prices for several agricultural products, as well as on real GDP growth for several of the corresponding countries. The time series of agricultural prices are short and show an irregular cyclicality that can be linked to economic performance and productivity, and we consider a variety of forecasting models, both univariate and bivariate, that are linked to output and productivity. Our results support both the efficacy of the new method and the forecastability of agricultural prices.

Keywords: Adaptive learning; Agricultural prices; Forecasting methods; θ-forecast; Model averaging; Real GDP growth (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207019301554
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:35:y:2019:i:4:p:1356-1369

DOI: 10.1016/j.ijforecast.2019.03.031

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-04-07
Handle: RePEc:eee:intfor:v:35:y:2019:i:4:p:1356-1369