EconPapers    
Economics at your fingertips  
 

Existence and approximation for vibro-impact problems with a time-dependent set of constraints

Laetitia Paoli

Mathematics and Computers in Simulation (MATCOM), 2015, vol. 118, issue C, 302-309

Abstract: We consider a discrete mechanical system subjected to perfect time-dependent unilateral constraints, which dynamics is described by a second order measure differential inclusion. The transmission of the velocity at impacts is given by a minimization property of the kinetic energy with respect to the set of kinematically admissible post-impact velocities. We construct a sequence of feasible approximate positions by using a time-stepping algorithm inspired by a kind of Euler discretization of the differential inclusion. We prove the convergence of the approximate trajectories to a solution of the Cauchy problem and we obtain as a by-product a global existence result.

Keywords: Discrete mechanical system; Time-dependent constraints; Differential inclusion; Inelastic shocks; Time-stepping scheme (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475414003140
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:118:y:2015:i:c:p:302-309

DOI: 10.1016/j.matcom.2014.11.015

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:118:y:2015:i:c:p:302-309