EconPapers    
Economics at your fingertips  
 

On the geometry of the rotating liquid drop

Ivaïlo M. Mladenov and John Oprea

Mathematics and Computers in Simulation (MATCOM), 2016, vol. 127, issue C, 194-202

Abstract: Here we consider the problem of a fluid body rotating with a constant angular velocity and subjected to surface tension. Determining the equilibrium configuration of this system turns out to be equivalent to the geometrical problem of determining the surface of revolution with a prescribed mean curvature. In the simply connected case, the equilibrium surface can be parameterized explicitly via elliptic integrals of the first and second kind. Here, we present two such parameterizations of the drops and we use the second of them to study finer details of the drop surfaces such as the existence of closed geodesics.

Keywords: Profile curves; Surfaces; Curvatures; Geodesics (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475414000883
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:127:y:2016:i:c:p:194-202

DOI: 10.1016/j.matcom.2014.04.003

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:127:y:2016:i:c:p:194-202