Risk measurement of a guaranteed annuity option under a stochastic modelling framework
Huan Gao,
Rogemar Mamon and
Xiaoming Liu
Mathematics and Computers in Simulation (MATCOM), 2017, vol. 132, issue C, 100-119
Abstract:
We address the problem of setting capital reserves for a guaranteed annuity option (GAO). The modelling framework for the loss function of GAO is developed. A one-decrement actuarial model is considered in which death is the only decrement, and the interest and mortality risk factors follow correlated affine structures. Risk measures are determined using moment-based density method and benchmarked with the Monte-Carlo simulation. Bootstrap technique is utilised to assess the variability of risk measure estimates. We establish the relation between a desired level of risk measure accuracy and required sample size under the constraints of computing time and memory. A sensitivity analysis of parameters is further conducted, and our numerical investigations provide practical considerations for insurers in meeting certain regulatory requirements.
Keywords: Affine models; Moment-based method; Risk measures; Correlated risk factors; Insurance with option-embedded features (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475416301100
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:132:y:2017:i:c:p:100-119
DOI: 10.1016/j.matcom.2016.07.003
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().