EconPapers    
Economics at your fingertips  
 

Metabolic rate constants: Some computational aspects

Stanko Dimitrov and Svetoslav Markov

Mathematics and Computers in Simulation (MATCOM), 2017, vol. 133, issue C, 91-110

Abstract: In this work we pose the question how reliable the Michaelis constant is as an enzyme kinetic parameter in situations when the Michaelis–Menten equation is not a good approximation of the true substrate dynamics as it may be in the case of metabolic processes in living cells. We compare the Michaelis–Menten substrate–product kinetics with the complete substrate–enzyme–product kinetics induced by the reaction scheme originally proposed by V. Henri. The Henri reaction scheme involves four concentrations and three rate constants and via the law of mass action is translated to a system of four ordinary differential equations (denoted as HMM-system). We propose a method for the computation of the three HMM rate constants, which can be applied in any situation whenever time course measurement data are available. The proposed method has been tested on the case study of acetylcholine hydrolysis. Our approach provides for the validation of the HMM-system by taking into account the uncertainties in the measurement data, and focuses on the use of contemporary computational tools.

Keywords: Enzyme kinetics; Reaction equations; Michaelis constant; Biomass–substrate–product dynamics; Computation of rate constants (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475415002529
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:133:y:2017:i:c:p:91-110

DOI: 10.1016/j.matcom.2015.11.003

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:133:y:2017:i:c:p:91-110