Simulations of non homogeneous viscous flows with incompressibility constraints
Caterina Calgaro,
Emmanuel Creusé,
Thierry Goudon and
Stella Krell
Mathematics and Computers in Simulation (MATCOM), 2017, vol. 137, issue C, 201-225
Abstract:
This presentation is an overview on the development of numerical methods for the simulation of non homogeneous flows with incompressibility constraints. We are particularly interested in systems of partial differential equations describing certain mixture flows, like the Kazhikhov–Smagulov system which can be used to model powder-snow avalanches. It turns out that the Incompressible Navier–Stokes system with variable density is a relevant step towards the treatment of such models, and it allows us to bring out some interesting numerical difficulties. We should handle equations of different types, roughly speaking transport and diffusion equations. We present two strategies based on time-splitting. The former relies on a hybrid approach, coupling finite volume and finite element methods. The latter extends discrete duality finite volume schemes for such non homogeneous flows. The methods are confronted to exact solutions and to the simulation of Rayleigh–Taylor instabilities.
Keywords: Non homogeneous viscous flows; Navier–Stokes equations; Mixtures; Multifluid flows; Finite volume methods (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475416302324
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:137:y:2017:i:c:p:201-225
DOI: 10.1016/j.matcom.2016.11.006
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().