EconPapers    
Economics at your fingertips  
 

A phase field approach to pressurized fractures using discontinuous Galerkin methods

Christian Engwer and Liesel Schumacher

Mathematics and Computers in Simulation (MATCOM), 2017, vol. 137, issue C, 266-285

Abstract: Subsurface fractures play an important role in many modern energy technologies (e.g. geothermal energy, fracking, nuclear waste management). Real world experiments concerning fracture propagation are usually expensive and time consuming, therefore numerical simulations become more and more important in this area. The main challenge for numerical methods is the evolving domain. Standard finite element (FE) methods require remeshing to resolve the crack surface once a fracture starts propagating. To overcome this problem we use a phase field approach to regularize the crack surface. Thereby we consider quasi static evolution in fluid filled media. For the one-dimensional case Γ-convergence of the approximating functional to the potential energy of the system is shown. Based on this model we propose a discontinuous Galerkin (DG) formulation for the displacement. This takes into account displacement jumps at the crack surface. Numerical experiments compare our method with a standard FE approach.

Keywords: Fracture propagation; Phase field; Gamma convergence; Discontinuous Galerkin (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475416302075
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:137:y:2017:i:c:p:266-285

DOI: 10.1016/j.matcom.2016.11.001

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:137:y:2017:i:c:p:266-285