EconPapers    
Economics at your fingertips  
 

Space–time domain decomposition for advection–diffusion problems in mixed formulations

Thi-Thao-Phuong Hoang, Caroline Japhet, Michel Kern and Jean E. Roberts

Mathematics and Computers in Simulation (MATCOM), 2017, vol. 137, issue C, 366-389

Abstract: This paper is concerned with the numerical solution of porous-media flow and transport problems, i.e. heterogeneous, advection–diffusion problems. Its aim is to investigate numerical schemes for these problems in which different time steps can be used in different parts of the domain. Global-in-time, non-overlapping domain-decomposition methods are coupled with operator splitting making possible the different treatment of the advection and diffusion terms. Two domain-decomposition methods are considered: one uses the time-dependent Steklov–Poincaré operator and the other uses optimized Schwarz waveform relaxation (OSWR) based on Robin transmission conditions. For each method, a mixed formulation of an interface problem on the space–time interface is derived, and different time grids are employed to adapt to different time scales in the subdomains. A generalized Neumann–Neumann preconditioner is proposed for the first method. To illustrate the two methods numerical results for two-dimensional problems with strong heterogeneities are presented. These include both academic problems and more realistic prototypes for simulations for the underground storage of nuclear waste.

Keywords: Mixed formulations; Advection–diffusion; Optimized Schwarz waveform relaxation; Time-dependent Steklov–Poincaré operator (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475416302087
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:137:y:2017:i:c:p:366-389

DOI: 10.1016/j.matcom.2016.11.002

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:137:y:2017:i:c:p:366-389