Numerical hyperinterpolation over nonstandard planar regions
Alvise Sommariva and
Marco Vianello
Mathematics and Computers in Simulation (MATCOM), 2017, vol. 141, issue C, 110-120
Abstract:
We discuss an algorithm (implemented in Matlab) that computes numerically total-degree bivariate orthogonal polynomials (OPs) given an algebraic cubature formula with positive weights, and constructs the orthogonal projection (hyperinterpolation) of a function sampled at the cubature nodes. The method is applicable to nonstandard regions where OPs are not known analytically, for example convex and concave polygons, or circular sections such as sectors, lenses and lunes.
Keywords: Multivariate orthogonal polynomials; Positive cubature; Hyperinterpolation; Nonstandard planar regions (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475416301197
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:141:y:2017:i:c:p:110-120
DOI: 10.1016/j.matcom.2016.07.009
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().