EconPapers    
Economics at your fingertips  
 

Generalized Adams method for solving fractional delay differential equations

Jingjun Zhao, Xingzhou Jiang and Yang Xu

Mathematics and Computers in Simulation (MATCOM), 2021, vol. 180, issue C, 401-419

Abstract: Based on fractional generalized Adams methods, a numerical method is constructed for solving fractional delay differential equations. The convergence of the method is analyzed in detail. The stability of the fractional generalized Adams methods for fractional ordinary differential equations is generalized to a general framework. Under such framework, the linear stability of the method is studied for fractional delay differential equations. Numerical experiments confirm the convergence and the stability of the method.

Keywords: Fractional delay differential equation; Generalized Adams method; Convergence; Stability (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475420303153
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:180:y:2021:i:c:p:401-419

DOI: 10.1016/j.matcom.2020.09.006

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:180:y:2021:i:c:p:401-419