EconPapers    
Economics at your fingertips  
 

High order discretization methods for spatial-dependent epidemic models

Bálint Takács and Yiannis Hadjimichael

Mathematics and Computers in Simulation (MATCOM), 2022, vol. 198, issue C, 211-236

Abstract: In this paper, an epidemic model with spatial dependence is studied and results regarding its stability and numerical approximation are presented. We consider a generalization of the original Kermack and McKendrick model in which the size of the populations differs in space. The use of local spatial dependence yields a system of partial-differential equations with integral terms. The uniqueness and qualitative properties of the continuous model are analyzed. Furthermore, different spatial and temporal discretizations are employed, and step-size restrictions for the discrete model’s positivity, monotonicity preservation, and population conservation are investigated. We provide sufficient conditions under which high-order numerical schemes preserve the stability of the computational process and provide sufficiently accurate numerical approximations. Computational experiments verify the convergence and accuracy of the numerical methods.

Keywords: Epidemic models; SIR model; Integro-differential equations; Strong stability preservation (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037847542200074X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:198:y:2022:i:c:p:211-236

DOI: 10.1016/j.matcom.2022.02.021

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-04-12
Handle: RePEc:eee:matcom:v:198:y:2022:i:c:p:211-236