A space-time generalized finite difference scheme for long wave propagation based on high-order Korteweg-de Vries type equations
Fan Zhang,
Po-Wei Li,
Yan Gu and
Chia-Ming Fan
Mathematics and Computers in Simulation (MATCOM), 2025, vol. 228, issue C, 298-312
Abstract:
In this paper, the space-time generalized finite difference scheme is applied to solve the nonlinear high-order Korteweg-de Vries equations in multiple dimensions. The proposed numerical scheme combines the space-time generalized finite difference method, the Levenberg-Marquardt algorithm, and a time-marching approach. The space-time generalized finite difference method treats the temporal axis as a spatial axis, enabling the proposed scheme to discretize all derivatives in the governing equation. This is accomplished through Taylor series expansion and the moving least squares method. Due to the expandability of the Taylor series to any order, the proposed numerical scheme excels in efficiently handling mixed and higher-order derivatives. These capabilities are distinct advantages of the proposed scheme. The resulting system of algebraic equations is sparse but overdetermined. Therefore, the Levenberg-Marquardt algorithm is directly applied to solve this nonlinear algebraic system. During the calculation process, the time-marching approach reduces computational effort and improves efficiency by dividing the space-time domain.
Keywords: Korteweg-de Vries equations; Meshless methods; Generalized finite difference method; Space-time coupled approach; Levenberg-Marquardt algorithm; Time-marching approach (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475424003677
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:228:y:2025:i:c:p:298-312
DOI: 10.1016/j.matcom.2024.09.012
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().