EconPapers    
Economics at your fingertips  
 

Dynamical behavior and bifurcation analysis for a theoretical model of dengue fever transmission with incubation period and delayed recovery

Burcu Gürbüz, Aytül Gökçe, Segun I. Oke, Michael O. Adeniyi and Mayowa M. Ojo

Mathematics and Computers in Simulation (MATCOM), 2025, vol. 234, issue C, 497-513

Abstract: As offered by the World Health Organisation (WHO), close to half of the population in the world’s resides in dengue-risk zones. Dengue viruses are transmitted to individuals by Aedes mosquito species infected bite (Ae. Albopictus of Ae. aegypti). These mosquitoes can transmit other viruses, including Zika and Chikungunya. In this research, a mathematical model is formulated to reflect different time delays considered in both extrinsic and intrinsic incubation periods, as well as in the recovery periods of infectious individuals. Preliminary results for the non-delayed model including positivity and boundedness of solutions, non-dimensionalization and equalibria analysis are presented. The threshold parameter (reproduction number) of the model is obtained via next generation matrix schemes. The stability analysis of the model revealed that various dynamical behavior can be observed depending on delay parameters, where in particular the effect of delay in the recovery time of infectious individuals may lead to substantial changes in the dynamics. The ideas presented in this paper can be applied to other infectious diseases, providing qualitative evaluations for understanding time delays influencing the transmission dynamics.

Keywords: Stability analysis; Dynamical systems; Dengue fever model; Epidemic models; Delay derivative equations (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475425000783
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:234:y:2025:i:c:p:497-513

DOI: 10.1016/j.matcom.2025.03.008

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-04-30
Handle: RePEc:eee:matcom:v:234:y:2025:i:c:p:497-513