N-policy for redundant machining system with double retrial orbits using soft computing techniques
Vijay Pratap Singh,
Madhu Jain and
Richa Sharma
Mathematics and Computers in Simulation (MATCOM), 2025, vol. 237, issue C, 42-69
Abstract:
The present study is concerned with the performance prediction of a double retrial orbit redundant repairable machining system. Both primary and secondary orbits are available as waiting/buffer space for the failed units. In these orbits, the failed units can reside and make re-attempts for the repair. As per N-policy, if there are no units in the orbits for the repairing job, the repairman goes on vacation and further starts the repair job when N-failed units are accumulated. The objective of this investigation is to evaluate the transient and steady-state distributions of the queue length of failed units under N-policy. The matrix analytic and matrix recursive methods are utilized for solution purpose while an adaptive neuro-fuzzy inference system (ANFIS) is employed for validating the feasibility of designing the AI-based controller. The harmonic search (HS) and particle swarm optimization (PSO) methods have been implemented for the cost optimization purpose so as to evaluate the optimal design parameters. The outputs of study provides critical insights into optimal system performance and improving the repair policy. Furthermore, a practical application of this investigation is demonstrated in a telecommunications network traffic system, where the proposed methods can be utilized to manage the maintenance issues of routers in the network traffic.
Keywords: Double retrial orbits; Redundant repairable system; ANFIS; N-policy; Imperfect service; Unreliable server; Metaheuristic optimization (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475425001557
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:237:y:2025:i:c:p:42-69
DOI: 10.1016/j.matcom.2025.04.025
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().