Efficient uncertainty quantification with the polynomial chaos method for stiff systems
Haiyan Cheng and
Adrian Sandu
Mathematics and Computers in Simulation (MATCOM), 2009, vol. 79, issue 11, 3278-3295
Abstract:
The polynomial chaos (PC) method has been widely adopted as a computationally feasible approach for uncertainty quantification (UQ). Most studies to date have focused on non-stiff systems. When stiff systems are considered, implicit numerical integration requires the solution of a non-linear system of equations at every time step. Using the Galerkin approach the size of the system state increases from n to S×n, where S is the number of PC basis functions. Solving such systems with full linear algebra causes the computational cost to increase from O(n3) to O(S3n3). The S3-fold increase can make the computation prohibitive. This paper explores computationally efficient UQ techniques for stiff systems using the PC Galerkin, collocation, and collocation least-squares (LS) formulations. In the Galerkin approach, we propose a modification in the implicit time stepping process using an approximation of the Jacobian matrix to reduce the computational cost. The numerical results show a run time reduction with no negative impact on accuracy. In the stochastic collocation formulation, we propose a least-squares approach based on collocation at a low-discrepancy set of points. Numerical experiments illustrate that the collocation least-squares approach for UQ has similar accuracy with the Galerkin approach, is more efficient, and does not require any modification of the original code.
Keywords: Uncertainty quantification; Polynomial chaos; Least-squares collocation; Smolyak algorithm; Low-discrepancy data sets (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037847540900127X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:79:y:2009:i:11:p:3278-3295
DOI: 10.1016/j.matcom.2009.05.002
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().