Bootstrapping divergence statistics for testing homogeneity in multinomial populations
V. Alba-Fernández and
M.D. Jiménez-Gamero
Mathematics and Computers in Simulation (MATCOM), 2009, vol. 79, issue 12, 3375-3384
Abstract:
We consider the problem of testing the equality of ν (ν≥2) multinomial populations, taking as test statistic a sample version of an f-dissimilarity between the populations, obtained by the replacement of the unknown parameters in the expression of the f-dissimilarity among the theoretical populations, by their maximum likelihood estimators. The null distribution of this test statistic is usually approximated by its limit, the asymptotic null distribution. Here we study another way to approximate it, the bootstrap. We show that the bootstrap yields a consistent distribution estimator. We also study by simulation the finite sample performance of the bootstrap distribution and compare it with the asymptotic approximation. From the simulations it can be concluded that it is worth calculating the bootstrap estimator, because it is more accurate than the approximation yielded by the asymptotic null distribution which, in addition, cannot always be exactly computed.
Keywords: f-Dissimilarity; Testing homogeneity; Multinomial populations; Bootstrap; Consistency. (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475409001037
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:79:y:2009:i:12:p:3375-3384
DOI: 10.1016/j.matcom.2009.04.002
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().