EconPapers    
Economics at your fingertips  
 

Discrete and continuous models of the dynamics of pelagic fish: Application to the capelin

Alethea B.T. Barbaro, Kirk Taylor, Peterson F. Trethewey, Lamia Youseff and Björn Birnir

Mathematics and Computers in Simulation (MATCOM), 2009, vol. 79, issue 12, 3397-3414

Abstract: In this paper, we study simulations of the schooling and swarming behavior of a mathematical model for the motion of pelagic fish. We use a derivative of a discrete model of interacting particles originated by Vicsek and Czirók et al. [A. Czirók, T. Vicsek, Collective behavior of interacting self-propelled particles, Physica A 281 (2000) 17–29; A. Czirók, H. Stanley, T. Vicsek, Spontaneously ordered motion of self-propelled particles, Journal of Physics A: Mathematical General 30 (1997) 1375–1385; T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet, Novel type of phase transition in a system of self-driven particles, Physical Review Letters 75 (6) (1995) 1226–1229; T. Vicsek, A. Czirók, I. Farkas, D. Helbing, Application of statistical mechanics to collective motion in biology, Physica A 274 (1999) 182–189]. Recently, a system of ODEs was derived from this model [B. Birnir, An ODE model of the motion of pelagic fish, Journal of Statistical Physics 128 (1/2) (2007) 535–568], and using these ODEs, we find transitory and long-term behavior of the discrete system. In particular, we numerically find stationary, migratory, and circling behavior in both the discrete and the ODE model and two types of swarming behavior in the discrete model. The migratory solutions are numerically stable and the circling solutions are metastable. We find a stable circulating ring solution of the discrete system where the fish travel in opposite directions within an annulus. We also find the origin of noise-driven swarming when repulsion and attraction are absent and the fish interact solely via orientation.

Keywords: Fish schooling; Interacting particle model; Capelin; Swarming; Migration (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475408003856
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:79:y:2009:i:12:p:3397-3414

DOI: 10.1016/j.matcom.2008.11.018

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:79:y:2009:i:12:p:3397-3414