Computing quasi-interpolants from the B-form of B-splines
A. Abbadi,
M.J. Ibáñez and
D. Sbibih
Mathematics and Computers in Simulation (MATCOM), 2011, vol. 81, issue 10, 1936-1948
Abstract:
In general, for a sufficiently regular function, an expression for the quasi-interpolation error associated with discrete, differential and integral quasi-interpolants can be derived involving a term measuring how well the non-reproduced monomials are approximated. That term depends on some expressions of the coefficients defining the quasi-interpolant, and its minimization has been proposed. However, the resulting problem is rather complex and often requires some computational effort. Thus, for quasi-interpolants defined from a piecewise polynomial function, φ, we propose a simpler minimization problem, based on the Bernstein–Bézier representation of some related piecewise polynomial functions, leading to a new class of quasi-interpolants.
Keywords: B-splines; Differential quasi-interpolants; Discrete quasi-interpolants; Integral quasi-interpolants; Error estimates; Approximation power; B-form (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475410004064
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:81:y:2011:i:10:p:1936-1948
DOI: 10.1016/j.matcom.2010.12.005
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().