A thermodynamically compatible rate type fluid to describe the response of asphalt
J. Hron,
J. Kratochvíl,
J. Málek,
K.R. Rajagopal and
K. Tůma
Mathematics and Computers in Simulation (MATCOM), 2012, vol. 82, issue 10, 1853-1873
Abstract:
In this paper, we consider two models that have been recently developed from a thermodynamic standpoint and that are capable of describing the response of nonlinear viscoelastic fluids. We test the efficacy of both models by comparing their predictions against torsion experiments conducted for asphalt, a material that is notoriously difficult to model. Both the models seem to describe the response adequately, though neither is really very accurate. This should not be surprising as asphalt is a heterogenous material comprising of many components which is being homogenized and modeled as a single constituent viscoelastic fluid.
Keywords: Rate type fluid; Large deformation; Numerical simulation (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475411000899
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:82:y:2012:i:10:p:1853-1873
DOI: 10.1016/j.matcom.2011.03.010
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().