On asymmetric generalised t stochastic volatility models
Joanna J.J. Wang
Mathematics and Computers in Simulation (MATCOM), 2012, vol. 82, issue 11, 2079-2095
Abstract:
In stochastic volatility (SV) models, asset returns conditional on the latent volatility are usually assumed to have a normal, Student-t or exponential power (EP) distribution. An earlier study uses a generalised t (GT) distribution for the conditional returns and the results indicate that the GT distribution provides a better model fit to the Australian Dollar/Japanese Yen daily exchange rate than the Student-t distribution. In fact, the GT family nests a number of well-known distributions including the commonly used normal, Student-t and EP distributions. This paper extends the SV model with a GT distribution by incorporating general volatility asymmetry. We compare the empirical performance of nested distributions of the GT distribution as well as different volatility asymmetry specifications. The new asymmetric GT SV models are estimated using the Bayesian Markov chain Monte Carlo (MCMC) method to obtain parameter and log-volatility estimates. By using daily returns from the Standard and Poors (S&P) 500 index, we investigate the effects of the specification of error distributions as well as volatility asymmetry on parameter and volatility estimates. Results show that the choice of error distributions has a major influence on volatility estimation only when volatility asymmetry is not accounted for.
Keywords: Generalised t distribution; Markov chain Monte Carlo; Stochastic volatility; Uniform scale mixture; Volatility asymmetry (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475412001073
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:82:y:2012:i:11:p:2079-2095
DOI: 10.1016/j.matcom.2012.04.007
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().