Geodesics on the equilibrium manifold
Andrea Loi and
Stefano Matta
Journal of Mathematical Economics, 2008, vol. 44, issue 12, 1379-1384
Abstract:
We show the existence of a Riemannian metric on the equilibrium manifold such that a minimal geodesic connecting two (sufficiently close) regular equilibria intersects the set of critical equilibria in a finite number of points. This metric represents a solution to the following problem: given two (sufficiently close) regular equilibria, find the shortest path connecting them which encounters the set of critical equilibria in a finite number of points. Furthermore, this metric can be constructed in such a way to agree, outside an arbitrary small neighborhood of the set of critical equilibria, to any given metric with economic meaning.
Keywords: Equilibrium; manifold; Regular; equilibria; Catastrophes; Riemannian; metric; Geodesics; Income; redistribution (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4068(08)00070-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:mateco:v:44:y:2008:i:12:p:1379-1384
Access Statistics for this article
Journal of Mathematical Economics is currently edited by Atsushi (A.) Kajii
More articles in Journal of Mathematical Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().