Self-organization and fractal dynamics in turbulence
A. Bershadskii,
E. Kit and
A. Tsinober
Physica A: Statistical Mechanics and its Applications, 1993, vol. 199, issue 3, 453-475
Abstract:
Results of analysis of the field of helicity, obtained in three different turbulent laboratory flows (grid-flow, boundary layer and jet) and a simple helical fracton model has been used in order to provide a quantitative explanation of anomalous turbulent diffusion in the troposphere and in the ocean. It is shown that Kolmogorov turbulence is critical in respect to the localization effects of subregions with large helicity (helical fractons) and it breaks up into helical fractons under the condition Df⩽2, where Df=2d/dw is the so called fracton dimension (D is the fractal dimension of the turbulent fractal and Dw is the dimension of random walks on this fractal). For strictly Kolmogorov turbulence D1=2. We study the internal structure of helical fractons and demonstrate that they are characterized by Df=43.
Date: 1993
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378437193900618
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:199:y:1993:i:3:p:453-475
DOI: 10.1016/0378-4371(93)90061-8
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().