Gibbs entropy and irreversibility
A. Pérez-Madrid
Physica A: Statistical Mechanics and its Applications, 2004, vol. 339, issue 3, 339-346
Abstract:
This contribution is dedicated to elucidating the role of the Gibbs entropy in the discussion of the emergence of irreversibility in the macroscopic world from the microscopic level. By using an extension of the Onsager theory to the phase space we obtain a generalization of the Liouville equation describing the evolution of the distribution vector in the form of a master equation. This formalism leads in a natural way to the breaking of the BBGKY hierarchy. As a particular case we derive the Boltzmann equation.
Keywords: Kinetic equations; Statistical mechanics; Mesoscopic nonequilibrium thermodynamics (search for similar items in EconPapers)
Date: 2004
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437104005369
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:339:y:2004:i:3:p:339-346
DOI: 10.1016/j.physa.2004.04.106
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().