Multiple scale analysis of complex networks using the empirical mode decomposition method
KePing Li,
ZiYou Gao and
XiaoMei Zhao
Physica A: Statistical Mechanics and its Applications, 2008, vol. 387, issue 12, 2981-2986
Abstract:
Empirical mode decomposition (EMD) method can decompose any complicated data into finite ‘intrinsic mode functions’ (IMFs). In this paper, we use EMD method to analyze and discuss the structural properties of complex networks. A random-walk method is used to collect the data series of network systems. Utilizing the EMD method, we decompose the obtained data into finite IMFs under different spatial scales. The analysis results show that EMD method is an effective tool for capturing the topological properties of network systems under different spatial scales, such as the modular structures of network systems and their energy densities.
Keywords: EMD method; Complex network; Random walk (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437108000502
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:387:y:2008:i:12:p:2981-2986
DOI: 10.1016/j.physa.2008.01.036
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().