The complexity of Chinese syntactic dependency networks
Haitao Liu
Physica A: Statistical Mechanics and its Applications, 2008, vol. 387, issue 12, 3048-3058
Abstract:
This paper proposes how to build a syntactic network based on syntactic theory and presents some statistical properties of Chinese syntactic dependency networks based on two Chinese treebanks with different genres. The results show that the two syntactic networks are small-world networks, and their degree distributions obey a power law. The finding, that the two syntactic networks have the same diameter and different average degrees, path lengths, clustering coefficients and power exponents, can be seen as an indicator that complexity theory can work as a means of stylistic study. The paper links the degree of a vertex with a valency of a word, the small world with the minimized average distance of a language, that reinforces the explanations of the findings from linguistics.
Keywords: Chinese syntactic dependency network; Complexity; Average path length; Clustering coefficient; Degree distribution; Genre (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437108000952
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:387:y:2008:i:12:p:3048-3058
DOI: 10.1016/j.physa.2008.01.069
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().