A closer look at the indications of q-generalized Central Limit Theorem behavior in quasi-stationary states of the HMF model
Alessandro Pluchino,
Andrea Rapisarda and
Constantino Tsallis
Physica A: Statistical Mechanics and its Applications, 2008, vol. 387, issue 13, 3121-3128
Abstract:
We give a closer look at the Central Limit Theorem (CLT) behavior in quasi-stationary states of the Hamiltonian Mean Field model, a paradigmatic one for long-range-interacting classical many-body systems. We present new calculations which show that, following their time evolution, we can observe and classify three kinds of long-standing quasi-stationary states (QSS) with different correlations. The frequency of occurrence of each class depends on the size of the system. The different microscopic nature of the QSS leads to different dynamical correlations and therefore to different results for the observed CLT behavior.
Keywords: Metastability in Hamiltonian dynamics; Long-range interactions; Central Limit Theorem behavior; Nonextensive statistical mechanics (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437108001222
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:387:y:2008:i:13:p:3121-3128
DOI: 10.1016/j.physa.2008.01.112
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().