Investigation on a temporal asymmetric oscillating temperature ratchet
Yue Zhang and
Jincan Chen
Physica A: Statistical Mechanics and its Applications, 2008, vol. 387, issue 14, 3443-3448
Abstract:
We study the directed motion of Brownian particles in a periodic potential due to a periodically oscillating temperature of the thermal environment. The steady average velocity of Brownian particles is evaluated by using the Langevin simulation. The features of current are discussed in detail. The results obtained here show that the periodically oscillating temperature produces a directed transport of the particles in a ratchet system and that through changing some parameters of this system, the magnitude and direction of transport can be controlled. Moreover, it is found that the temporal symmetric temperature oscillation may not be the best choice and the mode of temperature oscillation can be optimized.
Keywords: Temperature ratchet; Transport; Temporal asymmetry (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437108001982
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:387:y:2008:i:14:p:3443-3448
DOI: 10.1016/j.physa.2008.02.028
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().