On the universality class of the 3d Ising model with long-range-correlated disorder
D. Ivaneyko,
B. Berche,
Yu. Holovatch and
J. Ilnytskyi
Physica A: Statistical Mechanics and its Applications, 2008, vol. 387, issue 18, 4497-4512
Abstract:
We analyze a controversial topic about the universality class of the three-dimensional Ising model with long-range-correlated disorder. Whereas both theoretical and numerical studies agree on the validity of the extended Harris criterion [A. Weinrib, B.I. Halperin, Phys. Rev. B 27 (1983) 413] and indicate the existence of a new universality class, numerical values of the critical exponents found so far differ considerably. To resolve this discrepancy we perform extensive Monte Carlo simulations of a 3d Ising model with non-magnetic impurities being arranged in a form of lines along randomly chosen axes of a lattice. The Swendsen–Wang algorithm is used alongside with a histogram reweighting technique and finite-size scaling analysis to evaluate the values of critical exponents governing magnetic phase transition. Our estimates for these exponents differ from both previous numerical simulations and are in favor of a non-trivial dependency of the critical exponents on the peculiarities of long-range correlation decay.
Keywords: Random Ising model; Long-range-correlated disorder; Monte Carlo; Critical exponents (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437108003294
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:387:y:2008:i:18:p:4497-4512
DOI: 10.1016/j.physa.2008.03.034
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().