Random strategies of contact tracking
Bartłomiej Dybiec
Physica A: Statistical Mechanics and its Applications, 2008, vol. 387, issue 19, 4863-4870
Abstract:
One of several critical issues in the development of optimal disease containment and eradication strategies is the knowledge of underlying contacts between individuals. Here we employ random search strategies to identify all possible links, representing direct or indirect interactions between individuals building up the system. In order to recognize all contacts, the searcher performs symmetric Lévy flights onto the accessible area. We investigate the influence of local and non-local information, the exponent characterizing asymptotic behavior of Lévy flights, boundary conditions, density of links and type of a search strategy on the efficiency of the search process. Monte Carlo examination of the suggested model reveals that the efficiency of the search process is sensitive to the type of boundary conditions. Depending on the assumed type of boundary conditions, efficiency of the search process can be a monotonic or non-monotonic function of the exponents characterizing asymptotic behavior of Lévy flights. Consequently, among the whole spectrum of exponents characterizing the power law behavior of jumps’ length, there exist distinguished values of stability index representing the most efficient search processes. These exponents correspond to extreme (minimal or maximal) or intermediate values of stability index associated with Gaussian, maximally heavy-tailed or Cauchy-like strategies, respectively.
Keywords: Lévy flights; Optimal search strategies; Random walks; α-stable Lévy type random variables (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843710800397X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:387:y:2008:i:19:p:4863-4870
DOI: 10.1016/j.physa.2008.04.027
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().