Using relative entropy to find optimal approximations: An application to simple fluids
Chih-Yuan Tseng and
Ariel Caticha
Physica A: Statistical Mechanics and its Applications, 2008, vol. 387, issue 27, 6759-6770
Abstract:
We develop a maximum relative entropy formalism to generate optimal approximations to probability distributions. The central results consist of (a) justifying the use of relative entropy as the uniquely natural criterion to select a preferred approximation from within a family of trial parameterized distributions, and (b) to obtain the optimal approximation by marginalizing over parameters using the method of maximum entropy and information geometry. As an illustration we apply our method to simple fluids. The “exact” canonical distribution is approximated by that of a fluid of hard spheres. The proposed method first determines the preferred value of the hard-sphere diameter, and then obtains an optimal hard-sphere approximation by a suitably weighed average over different hard-sphere diameters. This leads to a considerable improvement in accounting for the soft-core nature of the interatomic potential. As a numerical demonstration, the radial distribution function and the equation of state for a Lennard-Jones fluid (argon) are compared with results from molecular dynamics simulations.
Keywords: Approximation method; Maximum entropy; Marginalization; Simple fluids; Hard sphere approximation (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437108007553
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:387:y:2008:i:27:p:6759-6770
DOI: 10.1016/j.physa.2008.08.035
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().