Two-dimensional Brownian vortices
Pierre-Henri Chavanis
Physica A: Statistical Mechanics and its Applications, 2008, vol. 387, issue 28, 6917-6942
Abstract:
We introduce a stochastic model of 2D Brownian vortices associated with the canonical ensemble. The point vortices evolve through their usual mutual advection but they experience in addition a random velocity and a systematic drift generated by the system as a whole. The statistical equilibrium state of this stochastic model is the Gibbs canonical distribution. We consider a single species system and a system made of two types of vortices with positive and negative circulations. At positive temperatures, like-sign vortices repel each other (“plasma” case) and at negative temperatures, like-sign vortices attract each other (“gravity” case). We derive the stochastic equation satisfied by the exact vorticity field and the Fokker–Planck equation satisfied by the N-body distribution function. We present the BBGKY-like hierarchy of equations satisfied by the reduced distribution functions and close the hierarchy by considering an expansion of the solutions in powers of 1/N, where N is the number of vortices, in a proper thermodynamic limit. For spatially inhomogeneous systems, we derive the kinetic equations satisfied by the smooth vorticity field in a mean field approximation valid for N→+∞. For spatially homogeneous systems, we study the two-body correlation function, in a Debye–Hückel approximation valid at the order O(1/N). The results of this paper can also apply to other systems of random walkers with long-range interactions such as self-gravitating Brownian particles and bacterial populations experiencing chemotaxis. Furthermore, for positive temperatures, our study provides a kinetic derivation, from microscopic stochastic processes, of the Debye–Hückel model of electrolytes.
Keywords: Vortex dynamics; Long-range interactions; Kinetic theory; Stochastic processes (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437108007851
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:387:y:2008:i:28:p:6917-6942
DOI: 10.1016/j.physa.2008.09.019
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().