EconPapers    
Economics at your fingertips  
 

A core-softened fluid model in disordered porous media. Grand canonical Monte Carlo simulation and integral equations

Orest Pizio, Hector Dominguez, Laszlo Pusztai and Stefan Sokołowski

Physica A: Statistical Mechanics and its Applications, 2009, vol. 388, issue 12, 2278-2288

Abstract: We have studied the microscopic structure and thermodynamic properties of a core-softened fluid model in disordered matrices of Lennard-Jones particles by using grand canonical Monte Carlo simulation. The dependence of density on the applied chemical potential (adsorption isotherms), pair distribution functions, as well as the heat capacity in different matrices are discussed. The microscopic structure of the model in matrices changes with density similar to the bulk model. Thus one should expect that the structural anomaly persists at least in dilute matrices. The region of densities for the heat capacity anomaly shrinks with increasing matrix density. This behavior is also observed for the diffusion coefficient on density from independent molecular dynamics simulation. Theoretical results for the model have been obtained by using replica Ornstein–Zernike integral equations with hypernetted chain closure. Predictions of the theory generally are in good agreement with simulation data, except for the heat capacity on fluid density. However, possible anomalies of thermodynamic properties for the model in disordered matrices are not captured adequately by the present theory. It seems necessary to develop and apply more elaborated, thermodynamically self-consistent closures to capture these features.

Keywords: Core-softened model; Disordered matrix; Adsorption; Integral equations; Computer simulation (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437109002106
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:388:y:2009:i:12:p:2278-2288

DOI: 10.1016/j.physa.2009.03.014

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:388:y:2009:i:12:p:2278-2288