Burst synchronization of electrically and chemically coupled map-based neurons
Xia Shi and
Qishao Lu
Physica A: Statistical Mechanics and its Applications, 2009, vol. 388, issue 12, 2410-2419
Abstract:
Burst synchronization and burst dynamics of a system consisting of two map-based neurons coupled through electrical or chemical synapses are discussed. Some basic characteristic quantities are introduced to describe burst synchronization and burst dynamics of neurons. It is observed that excitatory coupling leads to in-phase burst synchronization but inhibitory coupling results in anti-phase one. By using the basic characteristics of burst dynamics, the effects of the intrinsic bursting properties and the coupling schemes on complex bursting behaviors are also presented for both inhibitory and excitatory couplings. The results are instructive to identify bursting behaviors through experimental data.
Keywords: Map neuron; Burst synchronization; Fast threshold modulation (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437109002039
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:388:y:2009:i:12:p:2410-2419
DOI: 10.1016/j.physa.2009.03.008
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().