EconPapers    
Economics at your fingertips  
 

Folding/unfolding kinetics of lattice proteins studied using a simple statistical mechanical model for protein folding, I: Dependence on native structures and amino acid sequences

Haruo Abe and Hiroshi Wako

Physica A: Statistical Mechanics and its Applications, 2009, vol. 388, issue 17, 3442-3454

Abstract: The folding/unfolding kinetics of a three-dimensional lattice protein was studied using a simple statistical mechanical model for protein folding that we developed earlier. We calculated a characteristic relaxation rate for the free energy profile starting from a completely unfolded structure (or native structure) that is assumed to be associated with a folding rate (or an unfolding rate). The chevron plot of these rates as a function of the inverse temperature was obtained for four lattice proteins, namely, proteins a1, a2, b1, and b2, in order to investigate the dependency of the folding and unfolding rates on their native structures and amino acid sequences. Proteins a1 and a2 fold to the same native conformation, but their amino acid sequences differ. The same is the case for proteins b1 and b2, but their native conformation is different from that of proteins a1 and a2. However, the chevron plots of proteins a1 and a2 are very similar to each other, and those of proteins b1 and b2 differ considerably. Since the contact orders of proteins b1 and b2 are identical, the differences in their kinetics should be attributed to the amino acid sequences and consequently to the interactions between the amino acid residues. A detailed analysis revealed that long-range interactions play an important role in causing the difference in the folding rates. The chevron plots for the four proteins exhibit a chevron rollover under both strongly folding and strongly unfolding conditions. The slower relaxation time on the broad and flat free energy surfaces of the unfolding conformations is considered to be the main origin of the chevron rollover, although the free energy surfaces have features that are rather complicated to be described in detail here. Finally, in order to concretely examine the relationship between changes in the free energy profiles and the chevron plots, we illustrate some examples of single amino acid substitutions that increase the folding rate.

Keywords: Protein folding; Folding/unfolding kinetics; Chevron plot; Chevron rollover; Contact order; Long-range interaction (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437109004087
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:388:y:2009:i:17:p:3442-3454

DOI: 10.1016/j.physa.2009.05.020

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:388:y:2009:i:17:p:3442-3454