Fermi acceleration with memory-dependent excitation
Edson D. Leonel and
Eraldo P. Marinho
Physica A: Statistical Mechanics and its Applications, 2009, vol. 388, issue 24, 4927-4935
Abstract:
Some scaling properties for a classical particle confined to bounce between two walls, where one wall is fixed and the other one moves in time according to a random signal with a memory length are studied. We have considered two different kinds of collisions of the particle with the moving wall namely: (i) elastic and (ii) inelastic. The dynamics of the model is described in terms of a two-dimensional nonlinear mapping. For the case of elastic collisions, we show that the memory of the stochastic signal affects directly the behaviour of the average velocity of the particle. It then exhibits different slopes for the average velocity at different stages of the series with β≅3/4 for a short time, β≅1 for the average stage and β≅1/2 for a long time, as predicted by the Central Limit Theorem, therefore leading to the Fermi acceleration. The situation where inelastic collisions are taken into account yields a more drastic change, particularly suppressing the Fermi acceleration.
Keywords: Fermi accelerator model; Dissipation; Suppression of Fermi acceleration; Stochastic dynamics; Non-markovian; Memory-dependent processes (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843710900675X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:388:y:2009:i:24:p:4927-4935
DOI: 10.1016/j.physa.2009.08.020
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().