The Korteweg-de Vries soliton in the lattice hydrodynamic model
H.X. Ge
Physica A: Statistical Mechanics and its Applications, 2009, vol. 388, issue 8, 1682-1686
Abstract:
The lattice hydrodynamic model is not only a simplified version of the macroscopic hydrodynamic model, but is also closely connected with the microscopic car following model. The modified Korteweg-de Vries (mKdV) equation about the density wave in congested traffic has been derived near the critical point since Nagatani first proposed it. But the Korteweg-de Vries (KdV) equation near the neutral stability line has not been studied, which has been investigated in detail in the car following model. So we devote ourselves to obtaining the KdV equation from the lattice hydrodynamic model and obtaining the KdV soliton solution describing the traffic jam. Numerical simulation is conducted, to demonstrate the nonlinear analysis result.
Keywords: Traffic flow; Lattice hydrodynamic model; KdV equation (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437108009552
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:388:y:2009:i:8:p:1682-1686
DOI: 10.1016/j.physa.2008.11.026
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().