The effect of microscopic correlations on the information geometric complexity of Gaussian statistical models
S.A. Ali,
C. Cafaro,
D.-H. Kim and
S. Mancini
Physica A: Statistical Mechanics and its Applications, 2010, vol. 389, issue 16, 3117-3127
Abstract:
We present an analytical computation of the asymptotic temporal behavior of the information geometric complexity (IGC) of finite-dimensional Gaussian statistical manifolds in the presence of microcorrelations (correlations between microvariables). We observe a power law decay of the IGC at a rate determined by the correlation coefficient. It is found that microcorrelations lead to the emergence of an asymptotic information geometric compression of the statistical macrostates explored by the system at a faster rate than that observed in the absence of microcorrelations. This finding uncovers an important connection between (micro)correlations and (macro)complexity in Gaussian statistical dynamical systems.
Keywords: Probability theory; Riemannian geometry; Chaos; Complexity; Entropy (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437110002724
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:389:y:2010:i:16:p:3117-3127
DOI: 10.1016/j.physa.2010.03.028
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().