A vibrational approach to node centrality and vulnerability in complex networks
Ernesto Estrada and
Naomichi Hatano
Physica A: Statistical Mechanics and its Applications, 2010, vol. 389, issue 17, 3648-3660
Abstract:
We propose a new measure of vulnerability of a node in a complex network. The measure is based on the analogy in which the nodes of the network are represented by balls and the links are identified with springs. We define the measure as the node displacement, or the amplitude of vibration of each node, under fluctuation due to the thermal bath in which the network is supposed to be submerged. We prove exact relations among the thus defined node displacement, the information centrality and the Kirchhoff index. The relation between the first two suggests that the node displacement has a better resolution of the vulnerability than the information centrality, because the latter is the sum of the local node displacement and the node displacement averaged over the entire network.
Keywords: Network vibrations; Centrality; Spectral theory; Kirchhoff index; Information centrality; Social networks (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437110002748
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:389:y:2010:i:17:p:3648-3660
DOI: 10.1016/j.physa.2010.03.030
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().