STDP-driven networks and the C. elegans neuronal network
Quansheng Ren,
Kiran M. Kolwankar,
Areejit Samal and
Jürgen Jost
Physica A: Statistical Mechanics and its Applications, 2010, vol. 389, issue 18, 3900-3914
Abstract:
We study the dynamics of the structure of a formal neural network wherein the strengths of the synapses are governed by spike-timing-dependent plasticity (STDP). For properly chosen input signals, there exists a steady state with a residual network. We compare the motif profile of such a network with that of a real neural network of C. elegans and identify robust qualitative similarities. In particular, our extensive numerical simulations show that this STDP-driven resulting network is robust under variations of the model parameters.
Keywords: Complex networks; Network evolution; Spike-timing dependent plasticity; Network motifs (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437110004103
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:389:y:2010:i:18:p:3900-3914
DOI: 10.1016/j.physa.2010.05.018
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().