Nonequilibrium thermodynamics at the microscale: Work relations and the second law
Eliran Boksenbojm,
Bram Wynants and
Christopher Jarzynski
Physica A: Statistical Mechanics and its Applications, 2010, vol. 389, issue 20, 4406-4417
Abstract:
For macroscopic systems, the second law of thermodynamics establishes an inequality between the amount of work performed on a system in contact with a thermal reservoir, and the change in its free energy. For microscopic systems, this result must be considered statistically, as fluctuations around average behavior become substantial. In recent years it has become recognized that these fluctuations satisfy a number of strong and unexpected relations, which remain valid even when the system is driven far from equilibrium. We discuss these relations, and consider what they reveal about the second law of thermodynamics and the nature of irreversibility at the microscale.
Keywords: Work relations; Second law; Out of equilibrium (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437110000087
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:389:y:2010:i:20:p:4406-4417
DOI: 10.1016/j.physa.2010.01.001
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().