Separation of particles in time-dependent focusing billiards
Alexander Loskutov,
Alexei Ryabov and
Edson D. Leonel
Physica A: Statistical Mechanics and its Applications, 2010, vol. 389, issue 23, 5408-5415
Abstract:
We consider a family of stadium-like billiards with time-dependent boundaries. Two different cases of time dependence are studied: (i) the fixed boundary approximation and (ii) the exact model which takes into account the motion of the boundary. It is shown that when the billiards possess strong chaotic properties, the sequence of their boundary perturbations is the Fermi acceleration phenomenon which is three times larger than in the case of the fixed boundary approximation. However, weak mixing in such billiards leads to particle separation. Depending on the initial velocity three different things occur: (i) the particle ensemble may accelerate; (ii) the average velocity may stay constant or (iii) it may even decrease.
Keywords: Fermi acceleration; Time-dependent billiard (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437110006953
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:389:y:2010:i:23:p:5408-5415
DOI: 10.1016/j.physa.2010.08.013
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().