Investigation of acceptance simulated annealing — A simplified approach to adaptive cooling schedules
Johannes J. Schneider and
Markus Puchta
Physica A: Statistical Mechanics and its Applications, 2010, vol. 389, issue 24, 5822-5831
Abstract:
Simulated annealing is the classic physical optimization algorithm, which has been applied to a large variety of problems for many years. Over time, several adaptive mechanisms for decreasing the temperature and thus controlling the acceptance of deteriorations have been developed, based on the measurement of the mean value and the variance of the energy. Here we propose a new simplified approach in which we consider the probability of accepting deteriorations as the main control parameter and derive the temperature by averaging over the last few deteriorations stored in a memory. We present results for the traveling salesman problem and demonstrate, how the amount of data retained influences both the cooling schedule and the quality of the results.
Keywords: Optimization; Simulated annealing; Adaptive cooling schedule; Traveling salesman problem; TSP (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843711000748X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:389:y:2010:i:24:p:5822-5831
DOI: 10.1016/j.physa.2010.08.045
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().