EconPapers    
Economics at your fingertips  
 

Generalized statistics variational perturbation approximation using q-deformed calculus

R.C. Venkatesan and A. Plastino

Physica A: Statistical Mechanics and its Applications, 2010, vol. 389, issue 6, 1159-1172

Abstract: A principled framework to generalize variational perturbation approximations (VPAs) formulated within the ambit of the nonadditive statistics of Tsallis statistics, is introduced. This is accomplished by operating on the terms constituting the perturbation expansion of the generalized free energy (GFE) with a variational procedure formulated using q-deformed calculus. A candidate q-deformed generalized VPA (GVPA) is derived with the aid of the Hellmann–Feynman theorem. The generalized Bogoliubov inequality for the approximate GFE are derived for the case of canonical probability densities that maximize the Tsallis entropy. Numerical examples demonstrating the application of the q-deformed GVPA are presented. The qualitative distinctions between the q-deformed GVPA model vis-á-vis prior GVPA models are highlighted.

Keywords: Generalized Tsallis statistics; Additive duality; Variational perturbation approximations; q-deformed calculus; Hellmann–Feynman theorem; Generalized Bogoliubov inequality (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437109009431
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:389:y:2010:i:6:p:1159-1172

DOI: 10.1016/j.physa.2009.11.033

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:389:y:2010:i:6:p:1159-1172