Forecasting volatility in Shanghai and Shenzhen markets based on multifractal analysis
Hongtao Chen and
Chongfeng Wu
Physica A: Statistical Mechanics and its Applications, 2011, vol. 390, issue 16, 2926-2935
Abstract:
This paper analyzes the multifractality in Shanghai and Shenzhen stock markets using multifractal spectrum analysis and multifractal detrended fluctuation analysis. We find that the main source of multifractality is long-range correlations of large and small fluctuations. Then, we introduce a multifractal volatility measure (MV) and find that by taking MV as daily conditional volatility, the simulated series displayed similar “stylized facts” to the original daily return series. By capturing the dynamics of MV using the ARFIMA model, we find that the out-of-sample forecasting performance of the ARFIMA-MV model is better than some GARCH-class models and the ARFIMA-RV model under some criteria of loss function.
Keywords: Stock markets; Multifractal; Forecast; Multifractal volatility (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437111002688
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:390:y:2011:i:16:p:2926-2935
DOI: 10.1016/j.physa.2011.03.035
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().