On estimates for short wave stability and long wave instability in three-layer Hele-Shaw flows
Prabir Daripa
Physica A: Statistical Mechanics and its Applications, 2011, vol. 390, issue 18, 3069-3076
Abstract:
We consider the linear stability of three-layer Hele-Shaw flows with each layer having constant viscosity and viscosity increasing in the direction of a basic uniform flow. While the upper bound results on the growth rate of long waves are well known from our earlier works, lower bound results on the growth rate of short stable waves are not known to date. In this paper, we obtain such a lower bound. In particular, we show the following results: (i) the lower bound for stable short waves is also a lower bound for all stable waves, and the exact dispersion curve for the most stable eigenvalue intersects the dispersion curve based on the lower bound at a wavenumber where the most stable eigenvalue is zero; (ii) the upper bound for unstable long waves is also an upper bound for all unstable waves, and the exact dispersion curve for the most unstable eigenvalue intersects the dispersion curve based on the upper bound at a wavenumber where the most unstable eigenvalue is zero. Numerical results are provided which support these findings.
Keywords: Hele-Shaw flows; Upper bound; Lower bound; Growth rates; Linear stability (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437111003396
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:390:y:2011:i:18:p:3069-3076
DOI: 10.1016/j.physa.2011.04.028
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().