Stochastic resonance, reverse-resonance and stochastic multi-resonance in an underdamped quartic double-well potential with noise and delay
Lu-Chun Du and
Dong-Cheng Mei
Physica A: Statistical Mechanics and its Applications, 2011, vol. 390, issue 20, 3262-3266
Abstract:
The stochastic resonance in an underdamped quartic double-well potential with time delayed feedback is studied numerically. The signal power amplification is employed to characterize the stochastic resonance of the system. Simulation results indicate that: (i) for moderate frequency of the periodic driving, the stochastic resonance is decreased monotonically by increasing the delay time, but at high frequency, the reverse-resonance is induced to transform into a stochastic resonance by time delay; (ii) the damping coefficient has a critical value for which the stochastic resonance is optimum; (iii) a stochastic multi-resonance emerges when the signal power amplification is a function of the driving frequency.
Keywords: Underdamped bistable system; Stochastic resonance; Noise; Time delay (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437111003645
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:390:y:2011:i:20:p:3262-3266
DOI: 10.1016/j.physa.2011.05.006
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().